Indication of FASD (Venesection) in Amraze-jild (Skin diseases) in classical unani literature: an overview

Dr. Shahid Suhail, Dr. Irshad Ahmad, Dr. Mohammad Ali, Dr. Shama and Dr. Fateh Ali Tipo

Abstract
Fasd (venesection) is a method of Istiffrage-kulli (general evacuation). It removes madda-e-fasida (Morbid material) in the same proportion as present in the blood vessels or the abnormal humour or both. Amraze-jild (Skin diseases) are treated in multiple ways like through Dakhili Iste’mal (oral medicine), Hijamah (cupping), Taleeq (leeching), Fasd venesection, Musaffiyat (blood purifiers), Zimaad (Medicated paste applied externally) etc. Among these, one of the best options is Fasd (venesection). It is used in amraze-jild (skin diseases) which are due to Sue-mi’jaz Damvi (derangement of Blood) like Phalghamooni (phlegmon), Judaree (smallpox), Dummal (Furuncle), Banaat-ul-lail (urticaria), Duakhis (paronychia), Baadashnaam (rosacea) Taa’o’on (plague), Anoorisma (aneurysm) Surkh Baada/Humrah (erysipelas), Namlah (herpes zoster) Hashah/Khasra (measles) etc. Fasd (venesection) is used in Unani system of medicine to treat diseases of various systems of the body but in this review we will discuss only its usage in Amraze-jild (skin diseases) which are mentioned in our classical literature by eminent Unani Scholars.

Keywords: Fasd, Amraze-jild, Judaree, Unani, Skin diseases

Introduction
FASD (Venesection) it is also known as phlebotomy, venepuncture, blood draw, drawing of the blood, or taking blood. Actually it is a procedure in which an incision is given to any of the superficial vessels and blood containing madda-e-fasida (Waste material) is allowed to flow. FASD (Venesection) enjoys great importance in the management of various diseases[1] But in this review we will discuss only its usage in Amraze-jild (Skin diseases) which are mentioned in our classical literature by eminent Unani Scholars.

The skin is one of the largest organs in the body, having a surface area of 1.8 m² and making up about 16% of body weight. Skin thickness ranges from 1 to 4 mm. This thickness, and those of each of its layers, varies in different areas of the body. The epidermis is generally thin. It is particularly so in the skin of the eyelids: approximately 0.1 mm. The epidermis is particularly thick in the soles and palms, where it is approximately 1 mm deep. The dermis is up to 20 times as thick as the epidermis. It tends to be particularly thick on the back, where it can be approximately 3 to 4 mm [2]. It has many functions, the most important of which is as a barrier to protect the body from noxious external factors and to keep the internal systems intact. Skin is composed of three layers: the epidermis (Bashrah/Bairooni Tabqa), the dermis (Adma/Androoni Tabqa) and the subcutis Tahat-ul-Adma (Hypodermis) [3]. Other name of subcutis is subcutaneous tissue (Panniculius). The epidermis, is the outermost layer, which is formed by an ordered arrangement of cells called keratinocyte, whose basic function is to synthesize keratin, a filamentous protein that serves a protective function. [4] The layers of the epidermis are named for these characteristic traits. For example, as mentioned, the first layer is...
the basal layer because it is located at the base of the epidermis. Basal cells are cubical in shape. The next layer is referred to as the spinous layer (Tabqa Shawkiya) because the cells in this layer have prominent, spiny attachments called desmosomes. Desmosomes are complex structures composed of adhesion molecules and other proteins and are integral in cell adhesion and cell transport. The next layer is the granular layer (Tabqa Hububiya), named so because these cells contain visible keratohyaline granules. The last, outermost layer is the stratum corneum (SC) (Tabqa Qarniya), a condensed mass of cells that have lost their nuclei and granules The SC is covered by a protein material called the cell envelope, which aids in providing a barrier to water loss and absorption of unwanted materials [3].

Dermis: The dermis forms the layer below the epidermis and is thicker than the epidermis. The dermis is mainly made up of collagen and elastin fibers. It also contains blood vessels, nerves, sensory organs, sebaceous glands, sweat glands, and hair follicles.

Subcutis: This layer lies beneath the dermis and consists of fat cells. The subcutaneous tissue constitutes the largest volume of adipose tissue in the body. The thickness of the subcutaneous fat varies from one area of the body to another. It is especially thick in the abdominal region and thin in the eyelids. Fat cells are derived from mesenchymal cells, as are fibroblasts. They are organized into lobules by fibrous septae, which contain most of the blood vessels, nerves, and lymphatics that nourish the skin. The subcutaneous tissue serves as a receptacle for the formation and the storage of fat. The subcutaneous tissue also provides protection from physical trauma and insulation to temperature changes [4]. A continuous arteriovenous meshwork perforates the subcutaneous tissues and extends into the dermis. Blood vessels of varying sizes are present in most levels and planes of the skin. In fact, the vascularization is so extensive that it has been postulated that its main function is to regulate heat and blood pressure of the body, with providing nutrition to the skin a secondary function. No blood vessels are present within the epidermis. The nerve supply of the skin consists of sensory nerves and motor nerves [5].

2. FASD (Venesection)
FASD (venesection) is also known as Phlebotomy, Venepuncture, Blood draw, Drawing of the blood Taking Blood It is a method of Istiffrage-kulli (general evacuation) It removes madda-e-fasida (morbid material) in the same proportion as present in the blood vessels or the abnormal humour or both.[1]

2.1 Importance functions of FASD
• To evacuate the extra volume of blood causing the Hypertension
• To prevent accumulation of toxic and morbid matter
• To evacuate morbid matter from different part of body
• To stimulate metabolic functions
• Prevention of disease due to menopause
• To maintain the normal physic in bilious temperament individuals[7, 8].

3. Indications of vein for skin diseases
Basaleeq /Tamnor Badan (Basilic vein)
• Medial side in elbow joint

Qeefal /Sararoo (Cephalic vein)
• Lateral side in elbow joint

Akhal /Haft andam (Median cubital vein)
It connects Baseeq & Qeefal on anterior side of elbow joint

Ibti (Axillary vein)
Branch of Basaleeq

Safin/Mahfooz rag (Saphenous vein)
Medial melleolus

3.1 Diagnosis of Skin Diseases
The diagnosis of skin diseases depends on a good clinical history, detailed physical examinations and accurate usage of the lexicon of dermatology, to be able to identify the primary and secondary skin lesion and to recognise the various pattern formed by them. Some investigation like Magnifying lens, Glass slides, wood’s light, photo-patch testing skin biopsy, serological test for syphilis, serological test to detect HIV infection, Antinuclear antibody indirect immune-fluorescence test in bullous disorders [9].

Macules are up to 1 cm and are circumscribed, flat discolorations of the skin. Examples: freckles, flat nevi. Patches are larger than 1 cm and are circumscribed, flat discolorations of the skin. Examples: vitiligo, senile freckles, measles rash.

Papules are up to 1 cm and are circumscribed, elevated, superficial, solid lesions. Examples: elevated nevi, warts, lichen planus. A wheal is a type of papule that is edematous and transitory (Present less than 24 hours). Examples: Hives, sometimes insect bites. Plaques are larger than 1 cm and are circumscribed, elevated, superficial, solid lesions. Examples: mycosis fungoides, lichen simplex chronicus.

Nodules range to 1 cm and are solid lesions with depth; they may be above, level with, or beneath the skin surface. Examples: nodular secondary or tertiary syphilis, basal cell cancers, xanthomas.

Tumors are larger than 1 cm and are solid lesions with depth; they may be above, level with, or beneath the skin surface. Examples: tumour stage of mycosis fungoides, larger basal cell cancers.

Vesicles range to 1 cm and are circumscribed elevations of the skin containing serous fluid. Examples: early chickenpox, zoster, contact dermatitis. Bullae are larger than 1 cm and are circumscribed elevations containing serous fluid. Examples: pemphigus, second-degree burns.

Pustules vary in size and are circumscribed elevations of the skin containing purulent fluid. Examples: acne, impetigo. Petechiae range to 1 cm and are circumscribed, elevated, superficial, solid lesions. Examples: acne, impetigo, infected dermatitis. Excoriations are abrasions of the skin, usually superficial and
traumatic. Examples: scratched insect bites, scabies. Fissures are linear breaks in the skin, sharply defined with abrupt walls. Examples: congenital syphilis, athlete’s foot. Ulcers are irregularly sized and shaped excavations in the skin extending into the dermis or deeper. Examples: stasis ulcers of legs, tertiary syphilis. Scars are formations of connective tissue replacing tissue lost through injury or disease.

Keloids are hypertrophic scars beyond the borders of the original injury. Lichenification is a diffuse area of thickening and scaling with resultant increase in the skin lines and markings. Several combinations of primary and secondary lesions commonly exist on the same patient. Examples: papulosquamous lesions of psoriasis, vesiculopustular lesions in contact dermatitis, and crusted excoriation in scabies. Special Lesions

Some primary lesions, limited to a few skin diseases, can be called specialized lesions. Comedones or blackheads are plugs of whitish or blackish sebaceous and keratinous material lodged in the pilosebaceous follicle, usually seen on the face, chest or on the back, rarely on the upper part of the arms. Example: acne. Milia are whitish nodules, 1 to 2 mm in diameter, that have no visible opening onto the skin surface. Examples: in healed burn or superficial traumatic sites, healed bullous disease sites, or newborns. Telangiectasias are dilated superficial blood vessels. Examples: spider hemangiomas, chronic radio dermatitis. Burrows are very small and short (in scabies) or tortuous and long (in creeping eruption) tunnels in the epidermis. In addition, distinct and often diagnostic changes in the nail plates and the hairs are discussed in the chapter. Addition, distinct and often diagnostic changes in the nail plates and the hairs are discussed in the chapter.

4. Indications of Fasid in Skin Diseases

- Warm-e phalghamooni (Phlegmon) Fasad, (venesection) same side [11, 10, 12, 13].
- If Warm-e-phalghamooni is upper of neck Akhal/Fasad Haft Andam (venesection of Median cubital vein) [14].
- If Warm-e Phalghamooni is Lower of neck Fasad Basalee /Tannor
- Badan (Venesection of Basilic vein) [14].
- Judaree with fever (Smallpox) Fasad (Venesection) [13].
- Judaree (Smallpox) Fasad Akhal/ Haft Andam (Venesection of Median cubital vein) [10].
- Judaree (smallpox) initial 3 days Fasad Akhal/ Haft Andam [14].
- Nare Farsi Fasad, (Venesection) [14, 13].
- Dummal (Funracle) Fasad, (Venesection) Same side [10, 12, 11, 13].
- Baadeshaam (Rosacia) Fasad, (Venesection) [10, 11, 15].
- Baadeshaam (Rosacia) Fasad, Qeefal, Arnba, Rage beeni Taa’o on (Plague) Fasad, (Venesection) opposite side [10].
- Banaaat-ul-lail /Shara uralticia Fasad, (Venesection) [15].
- Banaaat-ul-lail /Shara uralticia Fasad, (both hand venesection) [13].
- Banaaat-ul-lail /Shara uralticia all over the body Fasad Akhal/ Haft Andam (Venesection of Median cubital vein) [10].
- Banaaat-ul-lail /Shara uralticia Lawer part of body Fasad Basalee /Tannor Badan (Venesection of Basilic vein) [10].
- Banaaat-ul-lail /Shara uralticia upper part of the body Fasad Qeefal /Sararoow (Cephalic vein) [10].
- Surkh Baada/Humrah (erysipelas) Fasad, (venesection) [10, 15, 14, 11, 13, 16].
- Mashara (Facial ursipelas) Fasad, (venesection of both hand) & Safin/Mafoos rag (Saphenous vein) some time Maqain, Manhrain & tadhilt-litaaq [13].
- Namlah (herpes zoster) Fasad, (venesection) [10, 14, 16, 13].
- Hasbha/Khasra (measles) Fasad, (venesection) [10].
5. Conclusion

From above discussion it is quite clear that FASAD is an old classical method of treatment in the Unani system of medicine. This method is applied to drains out blood and dominating Akhill mixed with blood from veins. FASAD is carried out when the quantity of the blood is excess in the body and patient is either exposed to the risk of developing a disease or has actually developed one. In classical literature of Unani system of medicine, Scholars explained about its indications and procedure. The details of venesection is mentioned in this article is based on classical literature including history, indications, types, amount of blood to be venesected, time, person, procedure, complications and special focus has been made on the number of vessels to be venesected and their benefits with respected to disease and conditions.

6. Acknowledgement

This work is completed in Department of Moalajat, Deoband Unani Medical College, Hospital and Research Centre, Saharanpur U.P and in Jamia Hamdard Higher educational institution in New Delhi, with the support of college Libraries.

7. Financial support: Nil

8. Competing interests: The author declares that there is no conflict of interests.

9. References