Effect of plyometric exercises on movement time among the Kho-Kho players

Dr. SS Biju

Abstract
The aim of the study was to determine the effect of plyometric exercise on movement time. Sixty male Kho-Kho Players (N=60) were randomly selected as subjects and their age ranged between 17 and 25 years. The selected subjects were randomly assigned into two equal groups with thirty subjects each (N=30). Group I experimental, Group II Control group. The experimental groups underwent their respective experimental treatment for twelve weeks 3 days per week and a session on each day. Control group was not exposed to any specific training apart from their curriculum. Movement time was taken as a variable for this investigation. The pre and post test were conducted one day before and after the experimental treatment. Analysis of covariance (ANCOVA) was used to analysis the collected data. Scheffe’s test was used as a post hoc test to determine which of the paired mean differed significantly. The results revealed that the plyometric training and plyometric training produced significant improvement (P≤ 0.05) on movement time as compared to control group.

Keywords: Plyometric training, movement time

Introduction
Sport has been a part of civilized societies throughout history. In some cases, as in Greece in the fifth century B.C, sport was of central importance to culture and has been studied and analyzed by scholars on many disciplines over the past 50 years. Most scholars agree that sport is a manifestation of play and that sports are institutionalized forms of play. Sport involves ritual and it involves tradition. Response programming entails translation of the selected response into the appropriate execution commands for the task. Response programming can be manipulated by increasing the number of steps in the movement sequence, including directional changes in the movement, altering the target size, or altering the timing or rhythm of the task. When RT increases significantly as a result of increasing the complexity of the movement response, the increase is commonly referred to as a movement complexity effect. Both simple and choice RT paradigms have been advocated to study movement complexity effects on response programming. The very elaborations of sport, its internal conventions of all kinds, its ceremonies, its endless meshes entangling itself for the purpose of training, testing and rewarding the rousing emotion within an individual to find a moment of freedom. Freedom is that state where energy and order merge and all complexity is purified into a simple coherence of parts and purpose and passions that cannot be surpassed and whose goal could only be to be itself.

Plyometrics is a method of developing explosive power, an important component of most athletic performances. As coaches and athletes have recognized the potential improvements which Plyometrics can bring about in performance, they have integrated it into the overall training programme in many sports and made it a significant factor in planning the scope of athletic development. Plyometrics is a new form of isotonic training which became popular during the late 1970s and early 1980s. Proposed to bridge the gap between speed and strength, plyometrics uses the stretch reflex to facilitate the recruitment of additional motor units and loads both the elastic and contractile components of muscle and hence, plyometrics has been referred to as bounce loading or rebound jumping.
The word Plyometrics is derived from the Greek word \textit{plethytein} meaning "to increase" or from the Greek roots \textit{plio} and metric meaning ‘More’ and ‘Means’. Plyometrics refers to exercises that enable a muscle to reach maximal strength in as shorter time as possible. Plyometrics exercises are important in sports requiring high levels of speed strength (ability to exert maximum force during high speed activity) to complete movement such as sprinting, jumping and throwing.

Methodology
For the purpose of this study, 60 Male Kho-Kho players who has played in the Senior state championships from different districts of Kerala were selected as the subjects. The age of the subjects ranged between 17 to 25 years. The subjects were informed about the nature of the study and their consent were also taken before involving them as subjects of the study. The selected subjects were later randomly assigned to a control group and to an experimental group of equal sizes. Sixty male Kho-Kho Players (N=60) were randomly selected as subjects and their age ranged between 17 and 25 years. The selected subjects were randomly assigned into four equal groups with thirty subjects each (N=30). Group I experimental, Group II Control group The experimental groups underwent their respective experimental treatment for twelve weeks 3 days per week and a session on each day. Control group was not exposed to any specific training apart from their curriculum. movement time was taken as variable for this investigation. The pre and post test were conducted one day before and after the experimental treatment.

Result and Discussion

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
 & Control group & Experimental group & Source of Variance & Sum of Squares & df & Mean Squares & F-ratio & P-value \\
\hline
Pre-test Mean & 19.867 & 20.900 & Between & 16.017 & 1 & 16.017 & 0.585 & 0.447 \\
S.D. & 5.043 & 5.416 & Within & 1588.167 & 58 & 27.382 & 0.569 & 0.454 \\
Post-test Mean & 18.833 & 19.600 & Between & 8.817 & 1 & 8.817 & 0.569 & 0.454 \\
S.D. & 3.705 & 4.157 & Within & 899.367 & 58 & 15.506 & 0.065 & 0.799 \\
Adjusted Post-test Mean & 19.133 & 19.301 & Between & 0.419 & 1 & 0.419 & & \\
S.D. & 0.464 & 0.464 & Within & 366.271 & 57 & 6.426 & & \\
\hline
\end{tabular}
\caption{Analysis of co-variance done among the two groups on movement time}
\end{table}

The Table 1 contains all the relevant factors related to analysis of co-variance done on the variable Movement Time. The post-test values are the values of the variable Movement Time, while the pre-test variable was taken as the co-variate. The P-value of 0.447 associated with the pre-test scores indicates that, there is no significant difference between the means of the pre scores of control and experimental group. Again a P-value of 0.454 associated with the post scores implies that, the post mean scores are not significant. Further, the said table do indicates an F-ratio of 0.065 on the adjusted post-test means and this do implies that, there existed no significant mean difference on the variable Movement Time among the control group and experimental group, as the P-value obtained has been 0.799, which is greater than 0.05, the level of significance set for this study.

Since, the F-ratio was found to be insignificant the LSD post-hoc test was not done on the variable Movement Time.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
 & Control group & Experimental group & Source of Variance & Sum of Squares & df & Mean Squares & F-ratio & P-value \\
\hline
Pre-test Mean & 13.400 & 14.300 & Between & 12.150 & 1 & 12.150 & 0.516 & 0.475 \\
S.D. & 4.860 & 4.843 & Within & 1365.500 & 58 & 23.543 & 0.000 & P< .001 \\
Post-test Mean & 13.767 & 18.00 & Between & 268.817 & 1 & 268.817 & 15.508** & 0.000 \\
S.D. & 4.384 & 3.930 & Within & 1005.367 & 58 & 17.334 & 72.299** & P< .001 \\
Adjusted Post-test Mean & 14.124 & 17.643 & Between & 184.112 & 1 & 184.112 & & \\
S.D. & 0.292 & 0.292 & Within & 145.153 & 57 & 2.547 & & \\
\hline
\end{tabular}
\caption{Analysis of co-variance done among the two groups on flexibility (trunk & back)}
\end{table}

** significant at 0.01 level as the P-value is < 0.01

The Table 2 contains all the relevant factors related to analysis of co-variance done on the variable Flexibility (trunk and back). The post-test values are the values of the variable Flexibility (trunk and back), while the pre-test variable was taken as the co-variate. The P-value 0.475 associated with the pre-test scores indicates that, there is no significant difference between the mean of the pre scores of control and experimental group. Again a P-value of 0.001 associated with the post scores implies that the post mean scores are significantly different. Further, the said table do indicates an F-ratio of 72.299 on the adjusted post-test means and this do implies that, there existed significant mean differences on the variable Flexibility (Trunk and Back) among the control and experimental group, as the P-value obtained has been 0.001 which is much less than 0.05, the level of significance set for this study.

Since, the F-ratio was found to be significant, the LSD post-hoc test was done, to find out whether there existed significant differences among the adjusted post-test means or not on the variable Flexibility and the details are presented in Table 3.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Adjusted Post-test means & Control group & Experimental group & Mean Difference & Std. Error & P-value \\
\hline
14.12 & 17.64 & 3.52* & .414 & P<.000** \\
\hline
\end{tabular}
\caption{LSD post-hoc test done on the two groups for difference between adjusted post-test paired means on flexibility (Trunk & Back)}
\end{table}

* The mean difference is significant at 0.05 level
** Based on estimated marginal means. Adjustment for multiple comparisons least significant difference (equivalent to no adjustment)

The above table do indicates a mean difference of 3.52 and a P-value of 0.000. This do clearly shows that, there existed
significant differences in the adjusted post-hoc paired means among the control group and experimental group. The graphical representation of the adjusted post-hoc means of the two groups are presented in Figure 1.

![Figure 1: Graphical Representation of the Pre-test, Post-test and Adjusted Post-test Means on Flexibility (Trunk & Back) of the two different groups](image)

Conclusion

The result of the study indicates that, there was no significant difference on Movement Time among the control group and the experimental group, as there was no change on Movement Time in both the groups after the plyometric training programme.

References

7. Cooper, John M, Mavlene Adrian, Ruth B. Glassow, Kinesiology, (5th ed.).